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Supplementary Fig. 1: Immunostaining of GFP and Sox2 and quantification of GFP* myofibers in EDL muscles with myofiber-specific
OSKM induction.
Scale bars= 50 um. Error bars represent mean+SD of 4 mice.
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Supplementary Fig. 2: Pattern analysis of DE genes from both EDL and SOL muscles with myofiber-specific OSKM induction.
a, Heatmap of DE genes from both EDL and SOL muscles. n=2 independent biological samples. 11 modules identified from pattern analysis. The lower
bounds, center, and upper bounds of box indicated 25th, 50th, and 75th percentile of the values. The whiskers extended the box to 1.5 fold of
Interquartile Range or the minimum and maximum values. Dots outside of the whiskers indicated potential outliers. b, Enriched GO terms in biological
process of the 3 modules outlined in graph a. n=2 independent biological samples.



Gene Set Description NES P Value FDR
mmu00190 Oxidative phosphorylation -2.5727 0 0
mmu05012 Parkinson disease -2.4353 0 0
mmu04714 Thermogenesis -2.4071 0 0

.~ mmu04932 Non-alcoholic fatty liver disease (NAFLD) -2.3631 0 0
8" mmu05016 Huntington disease -2.2639 0 0
mmu04723 Retrograde endocannabinoid signaling -2.0633 0 0.00025859
mmu00640 Propanoate metabolism -1.8616 0.0074074 0.0084226
mmu05010 Alzheimer disease -1.8241 0 0.011055
mmu00020 Citrate cycle (TCA cycle) -1.7945 0.0037313 0.013619
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Supplementary Fig. 3: Annotations of DE genes from EDL muscles with myofiber-specific OSKM induction.
a, Gene set enrichment analysis (GSEA) of the transcriptome of EDL muscles after 2.5- or 8.5-days Dox treatment. b, Enriched GO terms in
biological process of genes specifically downregulated in EDL muscles after 8.5-days Dox treatment.
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Supplementary Fig. 4: OSKM induction post-injury does not accelerate muscle regeneration.

a, Schematic representation of the experimental design. b, Immunostaining of embryonic myosin heavy chain (eMHC) and Dystrophin in TA

muscle sections. Scale bars= 50 um. ¢, Quantification of the percentage of immature myofibers that express eMHC. d, Myofiber size

distributions in TA muscle sections. e, Immunostaining of Pax7 in TA muscle sections. Scale bars= 50 um. Representative regions are shown at
higher magnification. Scale bars= 25 um. f, Quantification of Pax7* cells in TA muscle sections. Error bars represent mean+SD of 3 mice. A two-

sided unpaired Student’s t-test was performed.
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Supplementary Fig. 5: Cyclic OSKM induction in myofiber does not change the myofiber morphology but induces SCs doublets.

a, H&E staining of TA muscle sections after cyclic Dox treatment. Scale bars= 100 um. Similar results were repeated independently in 3 pairs of mice. In
addition, similar results were repeated twice for each mouse. b, Immunostaining of embryonic myosin heavy chain (eMHC) and Dystrophin in TA
muscle sections. Scale bars= 50 um. Similar results were repeated independently in 3 pairs of mice. In addition, similar results were repeated twice for
each mouse. ¢, Immunostaining of Pax7 in TA muscle sections of Actal-Cre*/4F"¢t/Ai14"¢* mice. Scale bars= 25 um. Similar results were repeated
independently in 3 pairs of mice. In addition, similar results were repeated twice for each mouse. d, SCs doublets identified in Cre* myofibers with
Immunostaining of Pax7 and MyoD. Error bars represent mean+SD of 5 mice. Scale bars= 10 pum.



d 2 days-on Cre- b

25-
" 2 days-on Cre+ TAM
°© J - -
TAM Sample Sample g 20 T . :j:ﬁgg g:; Day IO Il % 3} 4} 5} 6| 18
Day0123456 8 13 £ 15 x )
1 | 2 1 -Dox
- -Dox S 10- :
y - '% . pax7creER/4Fhet
Pax7creER/4Fhet E 1 I oL 1
0 - .‘ = ..; - Af = }1
) g Ly Y
c MyoD/Pax7/DAPI Pax7 MyoD BrdU/Pax7/DAPI Pax7 BrdU DAPI
. i . . . .
Cre+ Cre+
e f
9 - v 30- & 30 -
2 ©
4 4 o )
© 3 o P=0.13
2 £ 20- > 200 ——
[ 3' + 'E
2 I T 3 =
- 0 1[]- ' : k\‘.
O + 1[' o ® 1 B
I E s l o _ ¥
© o t X |
(X 6 o® m g &
0 I I X 0 T T 0 ! !
Cre- Cre+ Cre- Cre+ Cre- Cre+
i

Pax7/API | Pax7/DAPI

80 -
5 04
D s . wn i
= 50 s 1
v o _'I'_
o =
= 40 - g 0.34 T
3|3 ® E
[i 9 o 0.2' l
X 20+ - e =
- & 0.1

oLy x
0 CI C' 1 xr L =
re A 00 | | | | T ‘-I -!-'I'--_

10-20 20-30 30-40 40-50 50-60 60-70 70-80
Min. Ferret Diameter (um)
Supplementary Fig. 6: OSKM induction in SCs does not improve muscle regeneration.

a, Relative RNA levels of OSKM in Pax7¢reER/*/4Fhet (35 Cre+ for simplify) and Pax7*/*/4Fhet (as Cre-) mice. b, Schematic representation of the experimental design. c,
Immunostaining of Pax7 and BrdU in TA muscle sections. Scale bars= 25 um. d, Immunostaining of Pax7 and MyoD in TA muscle sections. Pax7* cells are indicated by
arrows. Scale bars= 25 pm. e, Quantification of Pax7* cells per field. f, Quantification of the percentage of Pax7* cells that express MyoD. g, Quantification of the
percentage of Pax7* cells with BrdU signals. h, H&E staining of TA muscle sections and myofiber size distributions in TA muscle sections. Scale bars= 100 pum. i,
Immunostaining and quantification of Pax7 in TA muscle sections. Representative regions are shown at higher magnification. Pax7* cells are indicated by arrows. Scale
bars= 50 um. Error bars represent mean+SD of 3 mice. A two-sided unpaired Student’s t-test was performed.
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Supplementary Fig. 7: Gene expressions in primary myoblasts

a, Relative RNA levels of OSKM in primary myoblasts isolated from Pax7creER/+/4Fhet and Pax7*/*/4F"et mice. b, Relative level of MyoD and
miR-133a in primary myoblasts isolated from Pax7<reER/4Fhet mice. Error bars represent mean+SD of 3 biological replicates. A two-sided
unpaired Student’s t-test was performed.
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Supplementary Fig. 8: Myofiber-specific OSKM induction accelerates muscle regeneration in aging mice.
a, Schematic representation of the experimental design. b-d, Immunostaining of Pax7 and MyoD and quantification of Pax7* cells per field and the percentage
of Pax7*MyoD* cells in TA muscle sections. Pax7* cells are indicated by arrows. Scale bars= 50 um. e and f, Immunostaining of Pax7 and BrdU and the
guantification of the percentage of Pax7*BrdU* cells in TA muscle sections. Scale bars= 10 um. g, Schematic representation of the experimental design. h and i,
Immunostaining of embryonic myosin heavy chain (eMHC) and Dystrophin in TA muscle sections, and the quantification of the percentage of immature
myofibers that express eMHC. Scale bars= 50 um. j and k, Immunostaining of Pax7 and MyoD, and quantification of Pax7* cells in TA muscle sections. Scale bars=
50 um. Representative regions are shown at higher magnification. Scale bars= 25 um. Arrows indicate Pax7* cells. |, H&E staining of TA muscle sections and
myofiber size distributions in TA muscle sections. Scale bars= 100 um. Error bars represent mean+SD of 5 mice. A two-sided unpaired Student’s t-test was
performed.



Systemic 4F + Dox (1mg/ml)
A
3 weeks
b MyoD/Pax7/DAPI Pax7 MyoD DAPI d
P=0.35
254 P=0.02 49 ——
- n
“ ke
= 20- n e 5] ® —*—
O _ —_
@) v
2 15 -
3ol + & 'F .
g 101 o], |m® ¥ - =
Yy— é 1 -
R o
0 I T 0 T T
PBS Dox PBS Dox
X
e _ f
Systemic 4F  + Dox (1Img/ml) Actal- Cre/4Fhet DayO
\ Day O
- 0.006- PBS _ 0.0015- PBS Y cro. < 00 - Cro
S Dox g_ Dox ° . S Cre
% Q g_ 5 Cre+ g. o
Q) X L
2 00044 _[ 1 > 00010 2 oot S
K] v 7] o
g 5 E ” I I
5 0.002- I _*é. 0.0005- 7 5 0001 5 0.0001 s
| - 'S) S | -
2 % 2 L 2 2
o £ o C
Z 0.000 - - F 0.00004— . = 0.0001= N = 00T o
& *
> € oc}“b‘ Q,oi'-\’ P o~ e°
g
» 254 P=0.006 PBS w« 157 Cre-
ay [k ]
E ”0. I Dox E __|__ Cre+
Systemic 4F % Actal-Cre/4Fhet % 1.0 -
) or 1.5- ’ oY
ol T =
\ N 1.0 &
o @ 0.5
= 0.5 =
(45 441
O [
X 40 . @ 0.0 '

Supplementary Fig. 9: The number and state of SCs in TA muscles of Systemic 4F mice.

a, Schematic representation of the experimental design. b-d, Immunostaining of Pax7 and MyoD and quantification of Pax7* cells per field and the percentage of
Pax7*MyoD* cells in TA muscle sections. Scale bars= 10 um. Error bars represent mean+SD of 6 mice. e, The levels of OSKM in TA muscles of systemic 4F mice after
local Dox or PBS injection. Error bars represent mean+SD of 5 mice. f, The levels of OSKM in TA muscles of Actal-Cre*/4F"tmice. Error bars represent mean+SD of 5

mice. For e and f, we used the same Gapdh primer in our previous publication®. g, The levels of p21 in SCs of systemic 4F mice and Actal-Cre*/4Fr¢tmice. Error bars
represent mean+SD of 3 mice. A two-sided unpaired Student’s t-test was performed.
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Supplementary Fig. 10: Recombinant Wnt4 diminishes the activation and proliferation of SCs on myofibers with OSKM induction.

a, Immunostaining of Pax7, MyoD and active Yap in single myofibers. Scale bars= 10 um. b, Quantification of the signal intensity of active Yap. n= 33 SCs
on Cre- myofibers and 45 SCs on Cre+ myofibers. Quantification of the percentage of Pax7*MyoD*active Yap* cells. n=4 Cre- muscles and 6 Cre+ muscles.
Error bars represent mean+SD. ¢, Schematic representation of the experimental design. d, Immunostaining of Pax7, MyoD and active Yap in single
myofibers after culture for 8 hours with or without rWnt4 treatment. Scale bars= 10 um. e, Quantification of the signal intensity of active Yap. n=33 SCs
and 35 SCs on Cre- myofibers treated with PBS and rWnt4, respectively. n=33 SCs and 33 SCs on Cre+ myofibers treated with PBS and rWnt4,
respectively. Error bars represent mean+SD. f, Quantification of the signal intensity of MyoD. n= 30 SCs and 32 SCs on Cre- myofibers treated with PBS
and rWnt4, respectively. n=33 SCs and 31 SCs on Cre+ myofibers treated with PBS and rWnt4, respectively. Error bars represent mean+SD. g,
Immunostaining of Pax7 and MyoD and quantification of Pax7* cells per cluster in single myofibers after culture for 48 hours with or without rWnt4
treatment. n= 35 and 30 cell clusters on Cre- myofibers treated with PBS and rWnt4, respectively. n= 37 and 33 cell clusters on Cre+ myofibers treated
with PBS and rWnt4, respectively. Myofibers were isolated from of 4 Cre- EDL muscles and 4 Cre* EDL muscles. Error bars represent mean+SD. A two-
sided unpaired Student’s t-test was performed.
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Supplementary Fig. 11: Screen gRNAs for CasRx-mediated Wnt4 knockdown.
a, lllustration of the florescence reporter designed for detecting the knockdown efficiency of CasRx-related gRNAs. Scale bars= 100 um. b,
Quantification of the knockdown efficiency of CasRx-related gRNAs. Error bars represent mean+SD of 3 biological replicates. A two-sided unpaired

Student’s t-test was performed.



Supplementary Table 1: gPCR primers

Gene Name 5'-Sequence-3'
Oct4-f GGCTTCAGACTTCGCCTTCT
Oct4-r TGGAAGCTTAGCCAGGTTCG
Sox2-f TTTGTCCGAGACCGAGAAGC
Sox2-r CTCCGGGAAGCGTGTACTTA
KIf4-f GCACACCTGCGAACTCACAC
KIf4-r CCGTCCCAGTCACAGTGGTAA
c-Myc-f ACCACCAGCAGCGACTCTGA
c-Myc-r TGCCTCTTCTCCACAGACACC
Gapdh-f CATGGCCTTCCGTGTTCCTA
Gapdh-r CCTGCTTCACCACCTTCTTGAT
Wnt4-f CGAGGAGTGCCAATACCAGT
Wnt4-r GCCACACCTGCTGAAGAGAT
p21-f CGCTGTCTTGCACTCTGGT
p21-r CGTTTTCGGCCCTGAGATGTT
Wnt4 Primerl-f CTGGAGAAGTGTGGCTGTGA
Wnt4 Primerl-r CAGCCTCGTTGTTGTGAAGA
Wnt4 Primer2-f TGCGAGGTAAAGACGTGCTG
Wnt4 Primer2-r CTTGAACTGTGCATTCCGAGG
TATA Proximal-f CAATTCCCAGCACCAAAAGT

TATA Proximal-r

TCCAAATAAGGTAGGTACCCAAAG




